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1 Historical Introduction

1.1

Classical mechanics

Classical mechanics is based on two distinct concepts.

(i)

Particles - Point-like objects which have positions and velocities fully determinated by
Newton’s second law as a function of time. mz'(t) = F(x(t),2'(t)). Once x(to),z'(to) is
known, the solution of the equation gives the position and velocity at all times. Particles
can collide, scatter, but never interfer.

Waves - Spread out objects which are functions of time and position. Periodic in ¢/z.
Propagation is determined by the wave equation which is

0% f(x,t) 2 0% f(x,t)

2 a2
We have solution fi(x,t) = Ay expli(kx — wt)]. And the solutions obey the dispersion
relation w = ck. We have that w is the angular frequency related to A (wavelength) by
v==% and \ = %€ = =. Waves interfer, causing constructive interference when in-phase

27 w
and destructive interference when out of phase.

However we have some programs with classical mehcanics.

(i)

Light behaving like particles

(a) Black body radiation (NE)
(b) Photoelectric effect

(¢) Compton scattering (NE)

(ii) Stability of atom

(iii) Particles behaving like waves

1.2

(a) De Broglie Principle
(b) Electron diffraction

Photoelectric effect

This is the experiement when light hits a metal surface and causes electrons to be emitted. They
used monochromatic radiation with fixed wavelength and changed the intensity of light and the
wavelength. The classical expectation were:

(i) Incident light carries E o< I = |AJ?. They proposed that as the intensity increases they is

enough energy to break the bond of the electron with the metal atoms, causing it to be
released.

(ii) The emission rate of the electrons should be constant over intensity past a certain point.

However what they actually observered was surprising.

(i) Below given w there was no emission of electrons.

(ii) The velocity (i.e. KE) depended on w not on I.

(iii) The emission rate increased with intensity.



In 1905 Einstein used these observations to propose the following
(i) Light comes in small quanta (now called photons).

(ii) Each photon carries a small packet of energy, E.
E =, p=hk

where

h=—
2w

where h is the Planck constant.

(iii) The interaction seen in the photoelectric effect was caused by each photon interacting with
each photon in a one-to-one interaction. So we have that

Kinetic energy of e~ = Kinetic energy of v — binding energy of the metal

we write this equation as
Emin =0= hwmin - ¢

So the kinetic energy of the electrons is directly proposition to w, not I which we expected
in classical mechanics. Instead increasing the intensity increases the emission rate as we
have more photons interacting with each electron.

1.3 Atomic spectra

In 1897 Thomson plum-pudding model purposed a uniform distribution of positive charge, with
negatively charged electrons inside.

Later in 1908, Rutherford performed his gold foil experiement, showing Rutherford scattering
(large angle scattering), hence proving that the atom was mostly empty space, and the positively
charged part was concentrated at the centre of the atom. This couldn’t work since the electrons
would radiate energy in an orbit and the electrons would collapse on the nucleus. Also it didn’t
explain the spectra of light emitted by atoms in a set of discrete values of

1
2) n,m € N.

1
Wynn = 2mcRy <2 —
n m
But in 1913 Bohr showed that the electron orbits are quantised so that the L (orbital angular
model) takes only these values
L, =nh

So it was proposed that L was quantised hence so is r,v, and E.
Proof. L = m¢v X r so we have that

h
IL| =L =Mour = v= = U, =N
MeT MeT
2
FCoulomb _ e ie
= €
dmeg T
and we know that
|FCoulomb = mea,



SO

e? 1 v? dmegh? 4
o T Me = = Th = 2
dmeg T mee
so finally
471'50 2
To = 2
mee
similiarly the energy is quantised since
1 e? 1 e 1
E = -m.? — - = E,=-— —-
2 dmeg 1 8megro n

The lowest energy state is called the Ground level, E; and the exicted levels Fs, F3, ... get closer
to eachother as energy increases.

_ABu, _, 2 \/1 1
Wmn = T T ATC 4dreghc n?2 m?

where w,,,, is the angular frequency of light associated with an electron moving from energy state
m to level n. This the Bohr prediction from Rydberg constatant Ry.

We have that

1.4 The wave-like behaviour of particles

In 1923 De Broglie hypothesised that each particle of any mass is associated with a wave having
angular frequency, w given by

w=—

h

. In 1927 this was observed by showing electron scattering off crystals which observed an inter-
ference pattern consistant with De Broglie’s hypothesis.

2 Foundation of Quantum Mechanics

In quantum mechanics instead of a vector, we have a state represented by the letter 1. The
basis is a continuous basis {x} — ¥(x,t). Instead of a vector space C" we have a space of
square-integrable functions, L?(R3). We define an inner product of two states, ¥, ¢ € L*(R3) as

(W, 8) = /R 0 e,

An operator O sends a state 1 to a state ¢ as shown,
¢ = O.

2.1 Wave function and probabilistic interpretation
In classical mechanics x and x determine the dynamics of a particle in a deterministic way.

However in quantum mechanics the state ¢(x,t) determinates the dynamics of particles in a
probablilistic way.



Definition. (State of a particle) We say that 1) is the state of a particle, where (x,t)
is the complex coefficient of ¢ in the continuous basis of x at a given time ¢. i.e. ¥(x,t)
is ¢ in the x representation and is called a wave function.

Y(x,t): R® = C

that satisfies mathematical properties dictated by its physical interpretation.

Born’s rule or the probabilistic interpretation for a particle described by a state ¢ to sit at x at
given time ¢ is

p(X, t) o W)(XJ)\Q = 1/)*(X,t)¢(x, t)

where
p(x,t)dV = probability that the particle sits in the some small volume dV cented at x.

From this we get properties on 1 as follows:
(i) Jgs [¥(x,t)[?d*z = N < oo with N € R and N # 0.

(ii) Because the total probablity has to be equal to 1 the wavefunction must be normalised to
1. So

@(Xv t) = ¢(Xa t)

1
vN
which integrates to 1 over R?, giving that 1 (x,t) = |[¢(x,1)|?.
Remark. Often we drop the v notation and just write 1, and normalise at the end.
If 1(x,t) = €'4)(x,t) with a € R then we have that
[, )[* = [ (x, 1)

so ¢ and 1/; are equivalent states.
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